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A complete and detailed study of a radiatively driven plane acoustic wave in a 
non-grey radiating and absorbing gas is carried out on the assumption of local 
molecular equilibrium. Specifically, the response of the gas in a semi-infinite 
space to a step input of radiation from a stationary black wall is investigated. 
The problem is physically interesting because radiative heat addition is the only 
driving mechanism, and this mechanism is unique and fundamental to the field 
of radiative gas dynamics. The solution shows that the heat addition gives rise 
initially to a compression-expansion wave in the gas, with the wave front 
controlled by radiation. This wave-front disturbance, though caused initially 
by the direct effect of radiative transfer, eventually outruns the region of appreci- 
able heating near the wall and becomes a modified-classical disturbance that 
propagates away from the wall at  the isentropic speed of sound. The radiative 
heat addition continues directly to affect the gas near the wall and in this manner 
drives the modified-classical wave indirectly by causing the formation of an 
‘effective gas piston’. The solution thus exhibits a linearized phenomenology 
corresponding to that observed in the non-linear leading wave associated with the 
nuclear fireball. 

1. Introduction 
We study here the problem of a radiatively driven plane acoustic wave in 

a non-grey radiating and absorbing gas. We investigate in particular the response 
of the gas in a semi-inkite half-space to a step change in temperature of a 
stationary black wall. The problem is physically interesting because radiative 
heat addition, which is the only driving force in the problem, has no counterpart 
in classical acoustic theory. We study only the linearized problem, since our main 
concern is for an intuitive understanding of how radiation by itself can supply 
the driving mechanism for gas-dynamic effects. The results, however, provide a 
basic first step toward understanding the corresponding non-linear phenomena. 
The work is part of a theoretical and experimental study of radiatively driven 
wave phenomena under way at Stanford University (cf. Long & Vincenti 
1967). 

Mathematically, this paper is a companion to Cogley & Vincenti (1969) (the 
paper immediately preceding). A familiarity with that paper will be presumed, 

t Present address : Department of Energy Engineering, University of Illinois, Chigago. 
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and is essential for a detailed understanding of how the solution is obtained. 
It will become apparent that the method of Whitham (1959), as extended to 
radiative acoustics in the preceding paper, permits us to obtain an approximate 
analytical solution, where various other mathematical techniques would most 
likely have failed. As for the mechanically driven wave of the preceding paper, 
the two contributions that are needed to make up the solution are not of the 
same order of magnitude at  all times. They are always equally important, how- 
ever, in constructing the physically correct response. The approximate method 
again allows us to handle these two contributions in a successful manner, where 
more conventional mathematical methods would usually pick up only the con- 
tribution of larger magnitude. 

The existing literature contains one paper directly related to our problem. 
Baldwin (1962) discussed, in an appendix, a formulation of the problem and 
presented an approximate solution for the temperature wave form by a different, 
more conventional method. He did not attempt a general solution for all depen- 
dent variables, and his temperature wave form did not include certain of the 
important physical phenomena that are evidenced here. 

A paper indirectly related to our problem is that of Solan & Cohen (1966). 
This was part of a series in which the Rayleigh problem for a radiating com- 
pressible gas was investigated (cf. Solan & Cohen 1967a, b).  The general formula- 
tion of these authors is for a grey gas and includes, of course, viscosity and 
thermal conduction. In the simplifications of the 1966 paper, where the 
Boltzmann number (the ratio of wave energy flux to radiant energy flux) is 
assumed large and the time small, the viscous and conduction effects become 
negligible in the outer flow. The governing equation also becomes linear, and the 
resulting physical problem is closely related to the present one. That is, the 
horizontally moving plate is convectively heated by viscous effects in a boundary 
layer of negligible thickness, and the heated plate then radiatively induces a 
response outside the layer. Other minor differences also exist between the two 
problems. The present solution is similar to Solan 85 Cohen’s, however, within 
the limited time region in which their results are valid. 

The mathematics of the present problem is similar to that of the mechanically 
driven wave of the preceding paper, in that the governing differential equations 
and the general approach to the approximate solution are identical. The only 
difference is in the driving disturbance. Thus, everything said about the exact 
governing equation and the equivalent lower-order equations in the preceding 
paper applies equally well here. Also, as in the preceding paper, the present treat- 
ment is general in the sense that it applies over the entire range of non-grey 
Boltzmann numbers and for all values of the absorption coefficient. It is approxi- 
mate in that it is restricted to certain small-, intermediate-, and large-time 
regions. 

2. Formulation 
The exact statement of the problem and its formal solution are set down in 

3 5 of the preceding paper. The solution is given by (1.32), and the c’s and C’s that 
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appear therein are determined by (1.29) and (1.30, 1.31), respectively.-t For the 
present problem of a stationary wall, we take u, = 0 in the latter equations. 
Again, since cI,  czI, CI and CII are such complicated functions of the transform 
variable s, a complete investigation of the exact solution would involve pro- 
hibitive labour, and an exact closed-form solution may even be impossible. 
An approximate solution is therefore again sought on the basis of the lower- 
order differential equations supplied by Whitham’s method, as discussed in the 
preceding paper. 

The Laplace transform of the solution based on these approximate equations 
is given by (1.37), where the various c’s, together with their ranges of validity 
i n s  for various Bo,, are given by (1.33)-( 1.36). The term with cs or cp in (1.37), 
upon inversion, is the superposition of the modified-classical harmonic waves; 
the term with c, or co, of the radiation-induced waves. The values of C, and CII 

again follow from (1.30, 1.31) with cI replaced by c, or cT and cII by c, or co. 
As in the solution for the mechanically driven wave, the transformed solution 
(1.37) need not be inverted as it stands. Expansions compatible with the approxi- 
mate method are carried out for the appropriate c’s and the C’s, and the resulting 
simplified solution is inverted. Appeal is then made to the Abelian theorems for 
the Laplace transform to interpret the inverted results (cf. Cogley & Vincenti 
1969). 

In  $ 6  of the preceding paper we introduced the terminology of ‘modified- 
classical’ and ‘radiation-induced’ contributions to denote the results of 
superposing the modified-classical and radiation-induced harmonic waves, 
respectively. In  the present problem this nomenclature becomes misleading, 
because the entire response is radiation-induced in the sense that radiation is the 
sole driving mechanism. We therefore adopt the terminology ‘radiation-con- 
trolled’ wave (or contribution) to denote the superposition of the radiation- 
induced harmonic waves. We shall see that this is physically meaningful, 
since this superposition always gives rise to that part of the discrete wave 
that is predominantly controlled by radiative transfer. The terminology ‘modi- 
fied-classical’ wave (or contribution) is retained for the superposition of the 
modified-classical harmonic waves. This contribution always acts like a classical 
acoustic wave in a non-radiating gas, slightly modified by radiative transfer. 
The foregoing is, of course, a mathematical division of the problem, and the gas 
itself exhibits only the sum of the two contributions. When the contributions are 
of comparable magnitude in a region of the flow field, the nomenclature is not 
particularly helpful, because it does not then suggest the actual behaviour of 
the gas. Many situations arise, however, in which the contributions are not of 
comparable size in a given region. In such situations the name of the larger 
contribution conveys which physical process determines the wave and how the 
wave propagates in that region. 

A diagram summarizing the phenomenology that will appear in the solution 
is given in figure 1. This diagram, which corresponds to figure 1.4, for the 

t The prefix 1 will be used to denote equations and figures that appear in the preceding 
paper. All mathematical symbols are identical to those used previously, and therefore 
will not be defined here. 
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mechanically driven wave, shows the regions of validity of the approximate 
solution in the BoN, T plane and gives the dimensionless groupings that govern 
the solution. The important physical phenomena are also indicated, but the 
detailed significance of the figure will become apparent only as the solution is 
obtained. 

The solution by Whitham's method is carried out in $ 3  and 34. In $ 3  the 
solution for Bo, > 161/y0 (weak radiation) is developed and discussed in detail. 
We then summarize in $4 the solution for Bo, = O(16,/yo) and Bo, < 16,/yo 

c 

co 
A 

I 
Intermediate-time solution*%? <~e I radiation-controlled t%e 

,o&'~$fl~v Intermediate-time solution : 
.D %ll,llll~~~~ modified-classical wavefront 

0 
Strong radiation Weak radiation 

Non-grey Boltzmann number BON 

FIGURE 1. Schematic representation of solution for the radiatively driven plane wave. 
(BoN is dofined in 53 of Cogley & Vincenti 1969.) a, transition from radiation-controlled 
wavc front to modified-classical wave front; B, transition of the radiativo heat addition 
from purely absorptive to  diffusive. 

(strong radiation), presenting only those details and results that are essential 
for an understanding of the complete solution. Little physical insight is lost by 
this abridgement, since the basic phenomenology of the solution is the same for 
all Bo,. The details, however, do depend on Bo,, so that at  least some considera- 
tion of these matters is necessary. 

In $ 5  a special limited solution, restricted by the requirement that 16r/Bo, < 1 
(sek figure l), is obtained by a separate method. This solution supports the small- 
and intermediate-time portions of the weak-radiation solution of $3.  For this 
range it supplies a solution that is continuously valid in r, whereas the general 
approach leads to a somewhat troublesome transition region at  7 = O(,/y,). 
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3. Solution for Bo, % 162/y0 (weak radiation) 
To obtain the solution in this range for small time, we expand the appropriate 

c’s (1.33, 1.35) and the C’s (1.30, 1.31) with uw = 0 for large values of 181. This 
leads to the following expressions:t 

c ,=  -s-g+o 

c m =  - l + O ( - ) ,  8Yo 
Bo, s 

8Tw 1 8TW czz=-- -+-5 +o ____ 
BoN ( s3 y:s ) ( y: Bo, 87) * 

By putting these results into (1.37), the transformed potential function obtained 

Here the radiation-controlled terms are listed first on the right-hand side, be- 
cause they usually represent the dominant contribution in the present problem. 
(This practice will be followed throughout.) As in the preceding paper, we are 
really interested in the physical variables, whose transforms are given in terms of 
4 by the relations (1.38) through (1.41). Substituting from (1) into these relations, 
and inverting by means of tables (e.g. Erd6lyi et al. 1954), we obtain the following 
results to O ( T ~ ) :  

- 

where X(7 - 6) is the unit step function. The terms with the step function are the 
modified-classical contribution ; the remaining terms are the radiation-controlled 
contribution. Since this latter contribution attenuates as e-5, the radiant heat 
transfer due to spontaneous emission from the gas is negligible compared with 
that due to the radiation from the wall (cf. Gilles, Cogley & Vincenti 1969, 
( 2 5 ) ) ,  i.e. the heat addition takes place here by simple absorption. At larger 
times we will see that the gaseous radiation becomes important; radiative heat 

t The parameter g 3 8(y,- l ) / B o ~  is &gain used for the reasons given in Cogley & 
Vincenti (1969, $6).  
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addition and transport will then become diffusive. The above solution gives no 
discontinuities in the physical variables themselves, but the step function does 
cause certain of their second derivatives to be discontinuous at  6 = r .  This 
solution is valid for dimensionless times up to O(,/y,). 

We see that the velocity at  the wall (6 = 0) is zero as required by the boundary 
condition, and the corresponding temperature and pressure disturbances 
increase, to first order, linearly with time. The perturbation density is negative 
for small values of 6 ,  becomes positive at larger distances, and then goes to zero 
for very large 6. Numerical results from this small-time solution for Bo, = 2 x lo3 
and yo = 1.4 are shown in figures 2,  3 and 4. These are three-dimensional plots of 

FIGURE 2. Velocity response for small time, yo = 1.4, BON = 2 x lo3. 

the normalized dependent variables versus the optical distance E and what we 
refer to as the optical time 7. (For definition of the normalized physical variables, 
see Cogley & Vincenti 1969, $3.)  The optical distance 6 =n,x is obtained by 
normalizing the physical distance by a non-grey radiative mean free path l/no 
(where no represents an effective frequency-averaged absorption coefficient; 
see Gilles, Cogley & Vincenti 1969). Time is normalized by the time it would 
take a classical isentropic acoustic wave to travel one radiative mean free path, 
i.e. 7 = n,asot. The line 5 = 7 on these plots thus shows where an isentropic 
acoustic disturbance would have propagated starting from the wall at  time zero. 

Figures 2 and 3 for the velocity and density, respectively, show a compression- 
expansion wave propagating into the gas. The strength of this wave increases 
with time as a result of the radiant heat transfer from the wall. The normalized 
temperature and pressure disturbances in figure 4 are almost equal for very small 



The radiatively driven discrete acoustic wave 673 

- 2 4  

FIGURE 3. Density response for small time, yo = 1.4, BON = 2 x lo3. 

12 

0 

FIGURE 4. Temperature and pressure response for small time, yo = 1.4, BON = 2 x lo3. 

43 Fluid Mech. 39 
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time. As time increases, however, the pressure falls below the temperature at  
small 6 and rises above it at larger 6.  This type of response is caused by the inertia 
of the gas, i.e. the temperature and pressure must respond initially in much the 
same manner (as required by the equation of state), since the heat transfer 
acting through the pressure gradient has not had time to set the gas in motion 
and significantly alter its density. At later times the inertia of the gas is over- 
come, the density changes appreciably, and the pressure need no longer follow 
the temperature. The excess of pressure over temperature at the larger times and 

I I I I I I I I I I 

I I I I I I I I 1 I 
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

Optical distance, E 
FIGURE 5. Modified-classical and radiation-controlled contributions to the total wave form, 

yo = 1.4, BON = 2 x lo3, 7 = 0.75. 

distances in figure 4 is essential, because the disturbance produced by the non- 
uniform heating must eventually propagate away from the wall as a modified- 
classical wave. For this to occur, the ratio plT must ultimately approach the 
classical value of yo/(yo- 1) near the front of the wave (near 6 = 7). We shall 
see this transition to a modified-classical wave front become complete in the 
next time region. 

It should be noted that in the small-time region the radiation-controlled con- 
tribution to the discrete wave is felt ahead of the modified-classical contribution. 
This is shown in figure 5 ,  where the separate contributions are presented for 
temperature and velocity a t  r = 0.75. The radiation-controlled contribution is 
dominant for these small times except near the wall (6 < T ) ,  where the modified- 
classical contribution acts as a boundary layer to the total response. 

As in the discussion of the mechanically driven wave in the preceding paper, 
the mathematical structure of co in (1.35), which also affects C, and CII, dictates 



The radiatively driven discrete acoustic wave 675 

an intermediate-time solution when B o N  4 16471,. This time corresponds through 
the Abelian theorems to expansions of the appropriate c’s and the C’s for small 
but finite Is[ in the annular region 16/BoN < Is1 < 1. The results are: 

c, = - s + ~ s 2 + 0 ( g s ~ ) ,  

c o =  -1+o(- )  8 
BONS ’ 

Using these expressions, we find that the transformed dependent variables are: 

The terms giving the radiation-controlled contribution in these equations 
can be inverted by means of tables. The modified-classical contribution can be 
inverted by the method of steepest descent. If the higher-order modified-classical 
terms in (6) and (8) are dropped, the inversion integral needed is 

1 P 1  

]=I - exp (ST - st + gs2Q ds. 
ZniJ, S 

This integral has been evaluated by Cogley (1968) for the appropriate Bromwich 
path; the result is 

which is the same type of result obtained in Cogley & Vincenti (1969, 36). 
Dropping the higher-order terms leads to considerable simplification in the 
solution with no real loss in physical meaning of the results; we merely lose 
sight of the fact that the dependent variables are not all diffused in precisely 
the same manner in the modified-classical contribution to the wave. The simplified 
solution obeys the classical acoustic relationships, 

Pm = youme, Pmc = and Tm = (Yo- 1)UrnC’ (11) 

which will hold for the isentropic modified-classical (mc)  contribution throughout 
43-2 
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this work. The intermediate-time solution, correct to o( 167/BoN), is thus written 

(12)  
finally as u s  

~~~ N ~ {e-t + I}, T,= BoN 

where the radiation-controlled term in (7)  has inverted to a non-contributing 
delta function. 

These results are valid in the region Jro < 7 < BoN/16 (see figure 1 )  except 
in one respect. In obtaining the results, we have expanded the two terms that 
appear in the transformed solution (1 .37)  and inverted them separately. It is 
shown by Cogley (1968), however, that these two separate terms, as well as their 
exact counterparts, are not individually analytic in the right-hand side of the 
complex s-plane. Only the sum of the two terms represents an analytic function 
in this region. The problem here is associated with the branch points of the exact 
formulation, and with our inability t0 follow a given contribution across certain 
transition regions, both of which matters are discussed later. Our procedures in 
the present region are therefore not completely valid, and this results in a loss of 
information about how the wave form was started a t  the smaller times. This 
leads to a quantitative inaccuracy a t  the wave front (( = 7) in the above results. 
This is not really a difficulty, however, because an independent limited solution 
can be obtained that is continuously valid over the small- and intermediate- 
time regions. This solution is given in § 5, and its results can be used to supplement 
the present results a t  the wave front. The present solution is presentcd because 
its separation of the problem into radiation-controlled and modified-classical 
contributions leads to important physical insight. Away from the wave front 
the results from the two approaches coincide within a few per cent. 

A plot of the two contributions to velocity and temperature for Bo, = 2 x lo3 
is given in figure 6 for a representative time in the intermediate-time region. 
In  a reversal of the roles observed a t  small time (figure 5), the modified-classical 
contribution is now felt ahead of the radiation-controlled contribution, which 
now provides the boundary layer. Near the wave front (6  = r ) ,  the modified- 
classical contribution dominates, and the discrete isentropic front acts almost 
like a purely gas-dynamic disturbance, i.e. for all practical purposes the modified- 
classical disturbances are related by T,, = (yo - l)umc, for the reasons discussed 
prior to ( 1  1). This is true in both approaches to  the solution, and thus the limited 
solution of 0 5 substantiates our dropping the higher-order terms in the present 
solution (cf. discussion prior to (1 1)  ). I n  the vicinity of the wave front, the broken 
line represents the results from the present solution, while the solid line is the 
more exact solution from $ 5 .  I n  all following plots for intermediate time, only 
this more exact wave front will be shown. 
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Comparing figures 5 and 6, we see that the two mathematically separate con- 
tributions (modified-classical and radiation-controlled) do not retain a continuous 
identity through the transition region between the small- and intermediate- 
time regions. The following figures will show, however, that the total or physical 
wave form is continuous. The lack of continuity of the individual contributions 
is disconcerting at first, since one naturally wants to follow, say, the modified- 
classical contribution from one time region to the next as a physical entity that 
affects the gas. This cannot be done in general, because across certain transition 
regions the radiation-controlled contribution in fact turns into the modified- 
classical contribution and vice versa. The mathematical reason for this is dis- 
discussed by Cogley (1968), and concerns the branch points of the exact problem. 

28 1 I I 1 I 1 I I I I I I 1 

2 4 c  I 
TBo,/T,; radiation-controlled 

1 
- 1 2 m l  -16 ._ 

0 2 4 6 8 10 12 14 16 18 20 22 24 

Optical distance, 5 
FIGURE 6. Modified-classical and radiation-controlled contributions to the total wave 

form, yo = 1.4, BON = 2 x lo3, 7 = 18.0. 

The present splitting of the solution is only mathematical and approximate and 
has physical meaning only when the gas response is identifiable primarily with 
one contribution in a given space-time region. Within certain transition regions 
the response is of one piece, and the division into modified-classical and radiation- 
controlled contributions is not possible. 

Three-dimensional plots of the wave forms for the intermediate-time region 
are given in figures 7 through 9. The velocity and density response of figures 7 
and 8 show the continuation of the compression-expansion wave set up in the 
small-time region. The compressive part of the wave (the wave front near = 7), 
now given by the modified-classical contribution, is the physical extension of 
th.e radiation-controlled contribution from the small-time region. That is, the 
disturbance created at small time by radiant heat addition has now outrun the 
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immediate effects of the wall radiation, and is propagating away from the wall 
as a discrete modified-classical wave at the isentropic speed of sound. This modi- 
fied-classical wave front diffuses only slightly in this time region, since the gas 
itself is only weakly radiating. Near the wall (i.e. within a few radiative mean 
free paths) the radiation-controlled contribution now provides the expansion 
part of the wave, still through simple absorption of the radiation from the wall. 
The overall picture in this time region is thus clear: Radiant heating of a layer of 
gas near the wall causes the gas to expand, and this expanding layer acts as an 
effective piston driving an essentially classical wave of almost uniform magnitude. 
This concept of an effective gas piston will be useful later. 

FIGURE 7. Velocity and pressure response for intermediate time, yo = 1.4, BON = 2 x 103. 

The pressure is plotted in figure 7 as pBoN/Twyo to emphasize that the major 
portion of the wave conforms closely to the classical relationship p = yoyou. 
Only near the wall, where the radiation is felt directly, does this pressure para- 
meter deviate from the velocity. 

It should be noted that figure 8 is plotted on two different vertical scales, and 
the scale for 6 is broken to bring both phenomena of interest into view. Since 
the break is made where the density is nearly uniform, no essential information 
is lost. The magnitude of the density disturbance in the wave front is seen to be 
small relative to that near the wall. This is so because the part of the wave that 
is more than a few radiative mean free paths from the wall receives little radiant 
energy directly. It is driven only indirectly through the action of the expanding 
gas piston. 

The temperature is plotted in figure 9 in much the same manner as the density. 
The gas is heated rapidly next to the wall by direct radiant heat transfer, and 
this energy input drives, again through the gas piston, a relatively small 
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temperature ‘precursor’ in the form of an essentially classical discrete wave (cf. 
figures 7 and 8). From (15) we see that the temperature discontinuity between the 
wall and the gas immediately adjacent to it decreases linearly with time, and 

5 

-240 

-280 0 

FIGURE 8, Density response for intermediate time, yo = 1-4, BON = 2 x lo3. 

’ 
’ 

FIGURE 9. Temperature response for intermediate tim0, yo = 1-4, Bory = 2 x lo3. 

will essentially disappear (i.e. T(5 = 0) = T,) at the end of the intermediate- 
time region (see figure l).? 

In  the limit as BoN-+m, the small- and intermediate-time solutions make 
up the total solution (see figure 1). In  this limit all perturbations given by both 
7 Baldwin (1962) has shown that the temperature discontinuity actually decays ex- 

ponentially. We have merely picked up the linear terms as the result of our expansions. 
Our oharacteristic decay time, however, is equivalent to his. 
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solutions go to zero, representing no response. This is the same result that one 
would obtain from the exact governing equation (1.6) by first taking the limit 
BoN+m and then solving the remaining trivial problem. This is, of course, 
the physically correct result. When BoN+m, the gas neither emits nor absorbs 
radiation, which is the only driving force present in the problem. The response is 
therefore zero throughout. 

To complete our story for Bo, B 16l/y,, the large-time solution is found by 
again expanding the appropriate c's and the C's for small Is], specifically for 
/sl < 16/BoN. This results in: 

cs = - + gs2+ 0 ( ~ ~ 4 ) ,  

The transformed dependent variables follow as 

and temperature is merely the difference between pressure and density as in (9). 
The radiation-controlled terms in these equations can again be inverted by 
means of tables, with results valid for all 5. The modified-classical terms could 
be inverted by the method of steepest descent and, as they stand, would lead to 
the correct contribution away from the wave front (i.e. away from < = 7 ) .  I n  
expanding CIcs, which is the function that represents the speed of the effective 
gas piston, for large time, however, we have lost information about the speed at  
intermediate times that is essential if we wish to obtain the correct wave form 
in the vicinity of the wave front itself.? In contrast to the situation a t  intermediate 
time, the loss of information here is not connected with the branch points or 
the resulting inability to follow a given contribution across the transition region; 
the modified-cla.ssica1 contribution is, in fact, a physically continuous wave 
across the region 16r/BoN = O(1).  The present problem did not arise in the 
mechanically driven wave, because the speed of the mechanical piston was con- 
stant for all T > 0. 

The needed information can be picked up by working from a more general 
expression for the speed of the effective piston C1cs = - CIIco, which drives the 

An unrealistic infinite response is obtained at the wave front without this modification. 
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modified-classical velocity contribution (cf. (1.30) with u, = 0). We proceed 
as follows : The more general expression is 

We now use the complete expression (1.36) for co, rather than its expansion for 
Is1 < 16/BoN7 to obtain 

This result can be inverted by means of tables to give 

where lT1 and I. are modified Bessel functions of the first kind. Equation (21) 
provides an expression for the speed of the effective gas piston that is continuously 
valid in the intermediate- and large-time regions. We can verify this by first 
expanding (21) for 16r/BoN < 1. This gives 

8 ~q~mc 21 - __ Bo, + ..., 
which is precisely the modified-classical term in the intermediate-time solution 
of (12)  evaluated at 6 = 0. This represents a constant speed for the effective gas 
piston that was observed for intermediate times. Expanding (21)  alternatively 
for 16r/BoN > 1, we obtain 

which is the same as one finds by inverting the leading-order modified-classical 
term in the large-time result (16) at 6 = 0. This shows that the speed of the effec- 
tive gas piston slows up a t  large time like I / & .  

A valid expression for all [ for the modified-classical contribution to the trans- 
formed velocity in (16) can now be obtained by replacing the coefficient of the 
second exponential term by the expression (20). We thus obtain, for all 6 at large 
time, 

This result can be inverted by a combination of the method of steepest descent 
and convolution to give (cf. Cogley 1968): 

Even though this result looks rather formidable, its physical meaning is not 
difficult to understand. Briefly, the integral tells us how the velocity input at  
7-7 (the term in braces, cf. (21))) which would be propagated invariantly in 
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classical acoustics, is changed by the diffusion due to radiant transfer within the 
gas. This diffusion is represented by the exponential function exp[ - (.7 - 5)z/4g~], 
where the factor 49 is the diffusion coefficient. 

The complete solution for large time can now be obtained in the physical 
variables by using tables to invert the radiation-controlled terms in (16)-( 18) 
and then adding the modified-classical contribution as given by (24) and (11). 
The results correct to 0(2/BoN/167) are: 

and T = p - p .  It is evident in (25) that certain higher-order effects have been 
retained in the expression for u((,r)/Twl_, i.e. the condition of zero velocity 
at  the boundary is not identically satisfied. This slight inconsistency is caused 
by our desire to obtain the correct wave form for all 6. The velocity boundary 
condition is, however, satisfied to o(l/BoN/l 6r) ,  which is all the accuracy claimed 
for the solution. 

In this large-time region the density and temperature near the wall are governed 
by the complementary error function. Thus, the radiation from the wall has heated 
the gas near the wall to such an extent that the radiative heat addition is now a 
diffusive process. The small contributions to  velocity and pressure from the 
radiation-controlled terms also reflect a diffusive process in that they decay 
like e~p[-[~Bo~/4(16)r].  The rate of radiative energy input from the wall 
is now decreasing relative to what it was at intermediate times (because of the 
hot gas now adjacent to the wall), and the speed of the effective gas piston that 
drives the modified-classical part of the wave is hence slowing down like 1/&, as 
was seen in (22). Owing to this, and to the radiative heat transfer to the relatively 
cool surroundings, the small disturbance given by the modified-classical con- 
tribution dies off like l/,/r and spreads out like Jr. 

All these results for large time are apparent in figures 10, 11 and 12. In  figures 
11 and 12, broken horizontal scales and differing vertical scales are used as before; 
the line < = 7 is also rotated as shown, so that the wave fronts can be presented. 
The velocity and density wave forms in figures 10 and 11 show the continuation 
and final form of the characteristic compression-expansion wave. The compressive 
part of the wave is mainly the modified-classical contribution, which propagates 
at  the isentropic speed of sound. The expansive part is primarily the radiation- 
controlled contribution, which diffuses into the gas from the wall. The pressure 
parameter I~BoN/T,~, is plotted in figure 10 to emphasize the relationships in the 
portion of the wave dominated by the modified-classical contribution. As is ap- 
parent from figures 11 and 12, the density and temperature suffer their strongest 
effect within the radiation-controlled contribution near the wall. The density 
parameter increases monotonically from minus one at the wall to small positive 
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values at  intermediate [, and then to larger positive values in the modified- 
classical wave front near [ = 7. The temperature parameter, as dictated by the 
equation of state, has a value of one at the wall and then decreases to small 
positive values for intermediate [. Ahead of this radiation-controlled temperature 
field is the small variation in temperature associated with the modified-classical 
contribution. 

Pressure 

FIGURE 10. Velocity and pressure response for large time, yo = 1.4, BON = 2 x lo3. 

FIGURE 11. Density response for large time, yo = 1.4, BON = 2 x lo3. 

The overall phenomenology of the radiatively driven discrete wave in a weakly 
radiating gas is thus apparent. At small times (7 < ,/yo) the radiation from the 
wall builds up a compression-expansion wave, with magnitude of order 1/Bo,, 
over a distance of two or three radiative mean free paths from the wall. This small 
disturbance grows in magnitude with time, and its front begins to propagate 
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acoustically away from the wall. As time becomes of O(,/y,) the resulting gas- 
dynamic wave front outruns the immediate effects of the wall radiation and 
travels as a discrete modified-classical wave a t  the isentropic speed of sound. 
The radiant energy input from the wall continues to increase the temperature 
and decrease the density over a distance of a few radiative mean free paths. 
By creating in this way an effective gas piston, it also produces the driving force 
that sustains the modified-classical wave at a constant magnitude during 
the intermediate-time region Jyo < r < Bo,/l6. At large times (r > Bo,/16) 
the radiative heat addition near the wall becomes essentially a diffusive process 

FIGURE 12. Temperetnre response for large time, yo = 1.4, BON = 2 x lo3. 

in an optically thick region. This process causes an increase in temperature 
and a decrease in density, with relatively negligible disturbances in velocity 
and pressure. Far ahead of this radiation-controlled region is a modified-classical 
wave front with small disturbances in all dependent variables. This wave front 
now decreases in strength and diffuses as a result of radiant heat transfer to its 
relatively cool surroundings and of the decreasing speed of the effective gas 
piston. As r+cO the velocity and the pressure disturbance go everywhere to 
zero, and the final state of the gas is one of a uniform increase in temperature and 
corresponding decrease in density. 

4. Solution for Bo, = O(16,/yO) and Bo, < 1647, 
Here we outline the solution for Bo, = 0(l64yO) and Bo, < 162/y, without 

presenting the mathematics or giving plots of all the wave forms. Such treatment 
is possible because the basic phenomenology of the previous solution continues 
t o  hold for all Bo,. The details do vary somewhat, but the general structure can 
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be understood with the aid of figure 1. The complete mathematical and graphical 
results are given by Cogley (1968). The case of BoN = 0(162/y0)  is discussed here, 
contrary to the procedure for the mechanically driven wave in Cogley & Vincenti 
(1969))  because more detail is needed to understand the present, more complex 
problem. It will be evident as the discussion proceeds how the three cases fit 
together to provide an understanding of the solution for a continuous spectrum 
of Bo,. 

BoN = 0(16,/yO) 
To obtain the solution corresponding to small time in this case, cs, c, and the 
C’s are expanded for (81 > 16/BoN. The resulting expressions are then used to 
find the dependent variables in the manner discussed in $3. The inversions 
for this time region can be found from tables. The solution that results is made 
up of a power series in T identical to that given for B o N  B 164y0  by (2)-(5) and 
a now equally important power series in 167/BoN, which was negligible when 
B o N  9 16JyO.  This difference is reflected in figure 1, where the present small- 
time solution is bounded from above simultaneously by 167/BoN = 0 ( 1 )  and 

The large-time solution is found by expanding c,, co and the C’s for 1s I < 1 6 /BoN.  
There is no intermediate-time region for this case, because of the mathematical 
structure of the c’s and their regions of validity. This is evident in figure 1,  where 
the intermediate-time regions for both large and small B o N  are shown to de- 
generate into merely a transition region as B o N  approaches O( 16Jy0)  from either 
side. The inversion in the large-time region employs the techniques of steepest 
descent and convolution, and the function representing the speed of the effective 
gas piston, which drives the modified-classical velocity contribution, is handled 
in a manner similar to that for the large-time solutionin $3. The resulting solution 
is identical in its lowest-order terms to the large-time solution for B o N  $ 1 6 J y O  

We now see how the solution must evolve as B o N  goes from O( 16Jy0)  to larger 
values. The two small-time solutions differ by the presence of a power series in 
167/BoN for B o N  = 0 ( 1 6 J y 0 ) .  Since this series is negligible for larger B o N ,  the 
power series in 7 becomes dominant, which causes the region of validity to be 
bounded from above by T = O(Jyo) (cf. figure 1).  The two large-time solutions 
are identical to first order, with the additional higher-order terms present for 
B o N  = O( 16Jy0)  becoming negligible as Bo, increases. In  both large-time 
solutions the region of validity is given by 16?/BoN > 1. The growing range of T 

between the small- and large-time regions (cf. figure 1 )  is filled in by the inter- 
mediate-time solution of $3. 

As before, the radiative heat addition gives rise at  small time to a compression- 
expansion wave with a wave front that is radiation controlled. The perturbations 
in all dependent variables are larger than those for B o N  9 162/y0, since the level 
of radiant transfer is now larger. The wave forms, however, are generally similar 
to those given in figures 2-4. The temperature discontinuity at  the wall has the 
same characteristic decay time of r = BoN/16.  As a result, it now essentially 
disappears by the end of the present Small-time region. 

7- = O(JY0). 

(cf. (25)-(27)). 
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At large time the solution again shows the continuation of the characteristic 
compression-expansion wave built up at  small times. Within the transition region 
a t  167/BoN = 0 ( 1 ) ,  the radiation-controlled wave front from small times has 
outrun the wall radiation and is now propagating away from the wall as a 
modified-classical wave at  the isentropic speed of sound. The radiation from the 
wall continues to cause an expansion of the gas optically close to the wall. 
As in $3, the velocity of the resulting gas piston decreases at large time like 1/47. 
The modified-classical wave driven by the piston again decreases in magnitude 
like 1/& and spreads out like 47. These phenomena are apparent in plots of the 
large-time density and temperature for Bo, = 10 in figures 13 and 14. The 
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FIGURE 13. Density response for large time, yo = 1.4, BON = 10. 

density plot shows the compression-expansion wave with the modified-classical 
wave front decreasing in magnitude and diffusing as it propagates. The pertur- 
bation in density optically close to the wall, where the gas receives radiant 
energy directly from the wall, is much larger than that a t  the wave front. The 
same is true for the temperature, whose wave form is particularly interesting 
in that it shows the modified-classical wave just emerging from the radiation- 
controlled effects a t  the smallest time (7 = 15). In both plots the modified- 
classical part of the wave propagates into the gas along ( = r,  while the 
radiation-controlled part diffuses into the gas like erfc [&c(Bo,/ 16r)dI. 

Bo, < 16,/y0 (strong radiation) 

The basic approach here parallels that of the preceding cases, and the basic 
phenomenology is much the same. Its occurrence in the c, r plane, however, is 
different, and it is this difference that we wish to emphasize. 

The small-time solution is obtained by expanding cs, c, and the C’s for Is1 > 
IG/Bo, (see (1.33, 1.35) and (1.30, 1.31), respectively). The resulting expressions 
are then used, as before, to obtain a solution that is identical to the one found for 
small time when Bo, = O( 16,/y0), except that we drop the now negligible power 
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series in 7. This solution has a region of validity bounded from above by the 
transition region 16r/BoN = O( l), as shown in figure 1. When BoN is small, the 
solution is valid only for very small values of T ,  and its region of validity vanishes 

The small-time solution gives rise once again to a compression-expansion wave, 
with the wave front controlled by radiation. Because of increased radiative 
transfer and the small time for which the present solution is valid, the radiation- 
controlled wave front is now felt very far ahead of the modified-classical contri- 
bution. The high level of radiative transfer also causes the perturbations in the 

as BoN + 0. 

FIGURE 14. Temperature response for large time, yo = 1.4, BON = 10. 

dependent variables to be larger than in the earlier cases. For this reason the 
temperature discontinuity at the wall decays rapidly in this time region and 
essentially disappears as 7 -z O(BoN/16). This same dimensionless time for decay 
was observed for all other values of BoN and represents an overall parameter for 
decay as indicated in figure 1. 

An intermediate-time solution appears again at small Boltzmann numbers. 
This is dictated by the results of the harmonic solution discussed in Cogley & 
Vincenti (1969, §4), which are reflected in the mathematical expressions of the 
approximate c’s. It is in this region that the isothermal solution (1.34) plays a 
role. The quantities cT, c ,  and the C’s are expanded in the annular region 
BoN/16yo < Is1 < 16/BoN to find the needed expressions for use in the solution 
equation (1.37). The solution is inverted by means of convolution, steepest des- 
cent and tables and is valid in the region BoN/16 < T < 16y,/BoN. 

The intermediate-time solution shows that the radiative heat addition is now 
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a diffusive process. (The transition to this type of radiative transport takes place 
generally for all Bo, across the transition region denoted by 16?/BoN = O(1) 
in figure 1.) That is to say, the gas has been sufficiently heated that the gaseous 
radiation due to spontaneous emission is as important as the radiation from the 
wall. The solution also exhibits the continuation of the compression-expansion 
wave built up at  small times. In  contrast to the intermediate-time solution for 
Bo, $ 16dy0, however, the compressive wave front is now still radiation- 
controlled and is characterized by complementary-error-function terms from the 
radiation-controlled contribution. This wave front is followed by a modified- 
classical expansion wave that propagates into the gas at  the isothermal speed of 
sound and acts as a boundary layer to the radiation-controlled contribution. 

k 
rq 0.2 

0 

FIUIJRE 15. Temperature and pressure response for intermediate time, 
yo = 1.4, B O ~  = z x  10-3. 

These details are illustrated in figure 15 in a combined plot of temperature 
and pressure for Bo, = 2 x in the intermediate-time region. The radiation- 
controlled wave front diffuses into the gas like erfc [ ((/2)(BoN/16yo~)i] and thus 
decays about the parabolic line < = 2(16yor/Bo,)*. The decrease in pressure at 

< r/ l /yo is due to the modified-classical expansion wave. This wave travels 
at the isothermal speed of sound, since it propagates in a strong radiative field 
that maintains an essentially constant temperature through the wave. It has 
effects to a depth slightly beyond f ;  = ?/1/y0 as a result of diffusion. 

The wave forms in figure 15 are in many respects similar to those presented in 
figure 4 for the small-time solutions when BoN 9 162/y0. This similarity is tied in 
with the change that takes place in the transition region defined by Bo,r/16yo = 

O(1)  and 7 = O(,/y,) in figure 1. In  passing through this region from smaller to 
larger 7, the wave front changes from radiation-controlled to modified-classical, 
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as observed in the solutions for the two earlier cases. All solutions for 7 prior to 
this region have essentially similar flow fields, by virtue of their relation to the 
transition. We can therefore expect that once the straight and parabolic paths in 
figure 15 intersect at  larger time, the present radiation-controlled wave front will 
be replaced by a modified-classical front propagating at  the isentropic speed 
of sound, We anticipate the isentropic speed since the wave front should then be 
optically so thick that radiative transfer within it is negligible. 

From figure 1 we see that the intermediate-time solution becomes the entire 
solution as Bo,+ 0. In  this limit the solution reduces to 

(cf. Cogley 1968).This is the same result that one would obtain by first taking the 
limit Bo,+ 0 of the exact governing equation (1.6) and then solving the present 
problem. This limiting solution represents an instantaneous uniform heating 
of the entire expanse of gas to the temperature of the wall, with a corresponding 
increase in pressure. This is a reasonable result, since the radiative heat transfer 
becomes infinite as Bo, + 0. 

The solution for large time is found by expanding c,, co and the C’s for 
Is1 < Bo,/16y0. The general method is again similar to that for large time in 
the earlier cases. The details, however, are more involved; anyone setting out to 
carry them though may wish to consult Cogley (1968). 

That the expectations discussed above are correct is shown in figure 16, where 
the velocity and pressure for Bo, = 2 x are plotted for two representative 
large times. The characteristic straight and parabolic lines are seen here to have 
crossed. The difference by the factor yo in the parabolic paths for theintermediate- 
and large-time regions reflects the difference between the infinite- and zero- 
speed equations used in the solution. The modified-classical contribution now 
forms the compressive wave front; the radiation-controlled contribution has 
become the expansion region, which now acts as a boundary layer to the modified- 
classical wave. The corresponding plots for temperature and density (see Cogley 
1968) are qualitatively similar to those of figures 11 and 12 for the large-time 
solution when Bo, $ 1 6 . J ~ ~ .  Note also the qualitative resemblance of figure 16 to 
figure 10. 

16,/y0 (strong radiation) is clear. At 
small times (T < Bo,/l6) the radiant heat addition gives rise once more to a 
compression-expansion wave in the gas. Because of the rapid heating, the 
radiative heat addition now becomes a diffusive process at  the relatively 
early time 7 = O(Bo,/16). At intermediate times (BoN/16 < 7 < 16y0/Bo,), the 
radiative heat addition from the wall continues to control the now diffusive 
wave front, which is located around = 2(16y07/BoN)~. The compression- 
expansion wave continues its development, with the expansion part of the 
wave being given by an isothermal modified-classical contribution. The gas- 
dynamic disturbance now outruns the immediate effects of the wall radiation 
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The overall phenomenology for BoN 
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only at the end of the intermediate-time region, and only then does the wave 
front begin to propagate as a modified-classical wave. At large times this 
wave front propagates into the gas at  the isentropic speed of sound. As for 
weak radiation, the heat addition from the wall drives the modified-classical 
wave indirectly, by forming an effective gas piston whose speed decreases in 

FIGURE 16. Velocity and pressure response for large time, yo = 1.4, RON = 2 x 10-3. 

this region like 1Nr. This portion of the total wave again decays and diffuses as 
it travels. The radiation-controlled contribution causes an increase in tempera- 
ture and a decrease in density in a growing region next to the wall, and the final 
state of the gas as r --f co and the wave front moves to infinity is again given by 
u/qu andp,/T,,+O, T/T,,+1, andp/T,-+ - 1. 

5. Limited solution for 16r/BON < 1 

If one examines all the foregoing solutions that are valid for l6r/BoN < 1 
(see figure l),  a common characteristic is evident. In  all instances the net radiative 
heat addition is by simple absorption from the wall, to the order of terms retained 
(see figure 1). This can be seen explicitly by calculating the negative gradient 
(i.e. the negative divergence) of the radiative heat flux (in for these solutions. 
The gradient of the heat flux is related to the potential function and thence to 
the physical quantities by 

(see material preceding (1 .7)) .  Using this equation one can evaluate - acR/ag, 

in particular, for all the solutions valid for 16r/Bo, < 1. (Those written down in 
this paper are given by (2)-(5) and (12)-(15).) The result is 
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We can use this result to derive an approximate acoustic equation valid for all 
BoN and for 7 such that the restriction 167/BoN < 1 holds. To this end we in- 
corporate this first term on the right-hand side of (28) into the linearlized one- 
dimensional gas-dynamic equations (cf. Gilles et ul. 1969) to obtain: 

ap au -+- = 0, 
a7 ag 

h = p - p .  

Elimination between these equations gives the following inhomogeneous wave 
equation for velocity 

The initial and boundary conditions for the present problem are: 

au 
a7 

r = O ,  6 2 0 ;  u = O ,  -- = 0,  

7 > 0 ,  g = o ;  u = o ,  

7 > 0 ,  6 ' 0 ;  u+o. 

The foregoing problem can be solved by the use of Riemann's function; this 
standard method is outlined in, e.g. Courant & Hilbert (1962). The solution can 
be written down at  once as 

The equations of conservation of mass and momentum plus the state equation 
lead to the following solution for the other dependent variables: 

TBo, 
rn 
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This solution is valid for all Bo, and r such that 16r/BoN < 1. As discussed in 
5 3, the solution agrees within a few per cent with those found earlier except at 
the wave front in the intermediate-time solution for Bo, 9 16&, (see figure 6). 
The reason for this was explained in $3,  and the present solution was used to 
provide a more accurate wave front in the plotted results for that section. 

The fact that the gradient of the heat flux decays like exp( - [) when 1 6 ~ /  
Bo, < 1 (the pure exponential is due to the substitute-kernel approximation) 
means that the gas in this situation acts as a simple absorber, i.e. the radiative 
heat addition is due to emission from the wall only. We may therefore call this 
region of the Bo,, T plane of figure 1 ‘absorption dominated’. A more complete 
explanation and exploitation of the special properties of this region will be made 
in a later paper. 

6. Concluding remarks 
The questions one must ask of any new approximate solution to a physical 

problem as complex as this are: (i) Does it tell a physically plausible and con- 
sistent story? (ii) Does it agree with what is already known from work on related 
problems? The answer to the first question is yes, since the results of the preceding 
sections do hang together in a physically sensible way. The second question can 
be answered by examining the relationship of the present solution to the limited 
work done on similar problems. 

As mentioned in 8 1, Baldwin (1962) has discussed the present problem in a 
limited way by an entirely different method. In  appendix H of his paper, he gave 
an approximate solution for the temperature wave form that is ‘correct for all 
limiting values of the variables and parameters’. A comparison with the present 
solution shows that his approach omits the important modified-classical con- 
tribution retained in the present analysis. Insofar as the radiation-controlled 
contribution alone is concerned, however, his temperature results do agree 
identically with ours when specialized to our time regions. Baldwin also gave a 
qualitative discussion of the velocity wave form, and this discussion can be cor- 
related with the present solution. 

Solan &, Cohen (1966) also presented a limited solution related to the present 
work. Their solution, as discussed in $ 1, is analogous to that carried out in $5 
and is limited essentially by the restriction (in present notation) that 16r/Bo, < 1. 
Solan &, Cohen’s work was for a grey gas and retained the non-linear boundary 
condition at the wall. Their plotted results, however, are qualitatively similar to 
those given here in figures 2-4. Results corresponding to our figures 7-9 were 
not presented. 

An interesting comparison can also be made between the present results and 
the nuclear-fireball phenomenology discussed by Brode (1964). The early stages 
in the fireball (i.e. for very short times after detonation) are the non-linear counter- 
part of the present problem, in that radiation from an essentially constant- 
temperature source plays the major role in setting up the wave phenomena. 
If we keep in mind the well-known differences between linear and non-linear 
wave problems, the similarity of the response in the two problems is striking. 
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According to Brode, the radiation from the nuclear explosion initially causes a 
very steep radiation-controlled wave front. This is the non-linear counterpart 
of the smooth radiation-controlled wave front of the present problem, the steep- 
ness of the wave front in the explosion being caused by the non-linear effect of the 
varying absorption coefficient. The density increases only slightly near the non- 
linear radiation-controlled front and then decreases behind it to form a 
compression-expansion wave equivalent to that found here. As time increases 
(although still remaining very small), the steep disturbance caused by the radiant 
heat addition outruns the immediate effects of the radiation and begins to form 
a classical adiabatic shock wave. This process is the non-linear counterpart to 
the present transition from the smooth radiation-controlled wave front to the 
diffuse modified-classical front. The non-linear problem also exhibits the typical 
overpressures that are observed in figure 15 just before the transition takes place. 
The analogy breaks down after the initial stages of the fireball because the case 
shock, caused by the mechanical explosion itself, comes into play. 

Our entire study rests, of course, on the use of the exponential approximation 
for the transmission functions that appear in the equations for the non-grey 
radiative flux (cf. Gilles et al. 1969). This is a non-rational approximation, 
and its accuracy is difficult to evaluate without extensive numerical calculations. 
A number of investigations have shown, however, that the exponential approxi- 
mation is certainly qualitatively valid. A limited solution to the present problem, 
independent of the exponential approximation, has been found, however (cf. 
Cogley 1968). This solution will be included in the paper mentioned at the end of 

Linearization has also been used throughout, and this can lead to inaccuracies 
at large time because of well-known, cumulative non-linear effects. Since the 
velocity disturbance is small and goes to  zero for (-+ 00 in the present problem, 
these effects will be negligible for larger disturbances in the case under discussion 
than they would be in the case of the impulsively moving wall; i.e. the present 
solution is uniformly valid in the limit of a vanishingly small disturbance. 
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